

I-PCM: IoT-monitored PCM-based façade

for low-energy buildings bines srl BuildWind sprl

Advanced MicroTurbines srl

VE.CAM srl

Emanuele Guglielmino

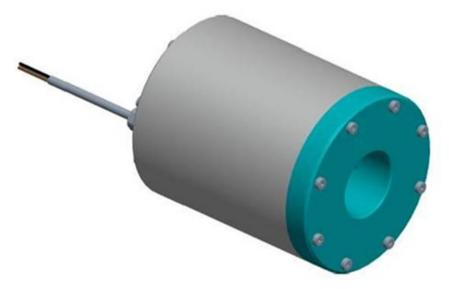
Alessandro Borneto

Diego Donati

Alessandro Gambale

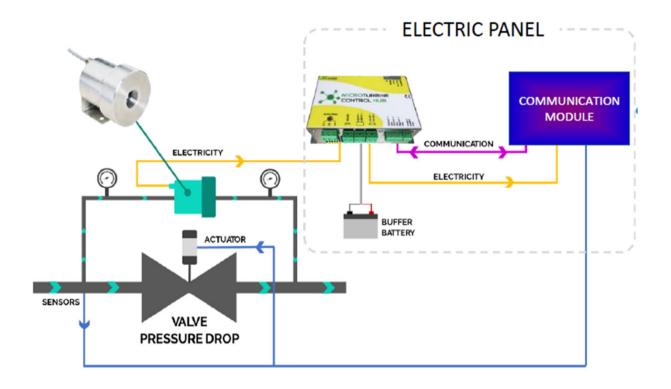
Gabriele Mosca

Project Summary



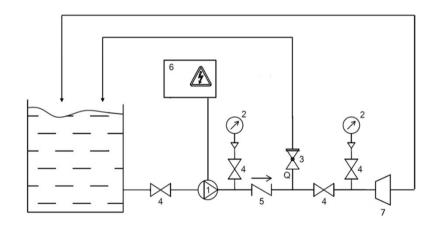
- T1 Customization of microturbines and IoT system for a residential building.
- T2 Modelling and simulation of a residential building equipped with PCM technology and an IoT sensor system powered by microturbines.
- T3 Engage commercial partners to ensure a successful market launch.

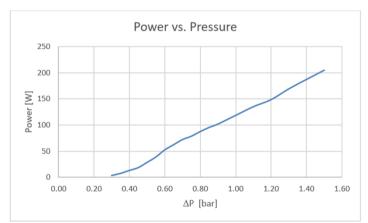
Microturbine Prototype


CAD Design

Microturbine prototype made in POM-C plastic

How It Works

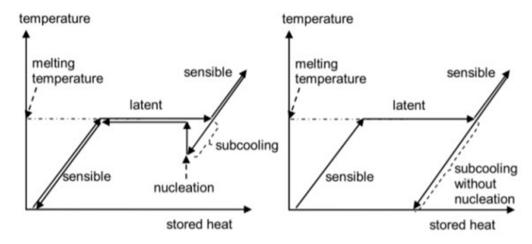




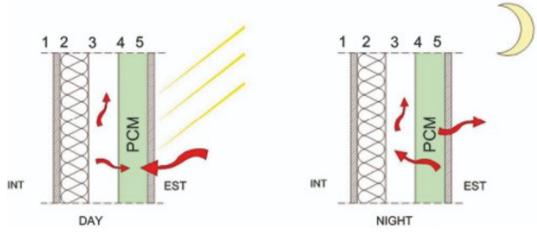
Microturbine Lab Testing

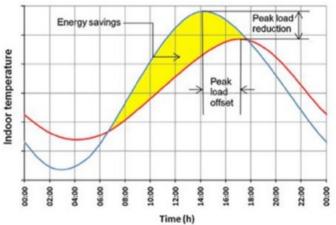
Bench test schematic

Power vs. pressure


PCM Analysis and Building Simulation

PCM – Phase Change Materials





PCM – Phase Change Materials

PCM vs. Insulators

I-PCM · IoT-monitored PCM-based Facade for Low-energy Buildings

PCMs

- ✓ Store heat during their phase change
- ✓ In winter conditions, PCMs prevent heat to be transferred outside
- ✓ In summer PCMs prevent the heat to be transferred inside by storing it in
- ✓ PCMs can be chemical customized for its purpose
- Problems if wall is not fully irradiated
- New technology

Insulators

- Store heat during their phase change
- ✓ In winter conditions, insulators prevent heat to be transferred outside
- In summer insulators store heat inside
- Insulators cannot be chemical customized for its purpose
- √ No problems if wall is not fully irradiated
- √ Known technology

Materials: PCM & Insulator Assembly Methods

I-PCM · IoT-monitored PCM-based Facade for Low-energy Buildings

PCMs capsule

Micro, macro incapsulation; avoid contact with outside

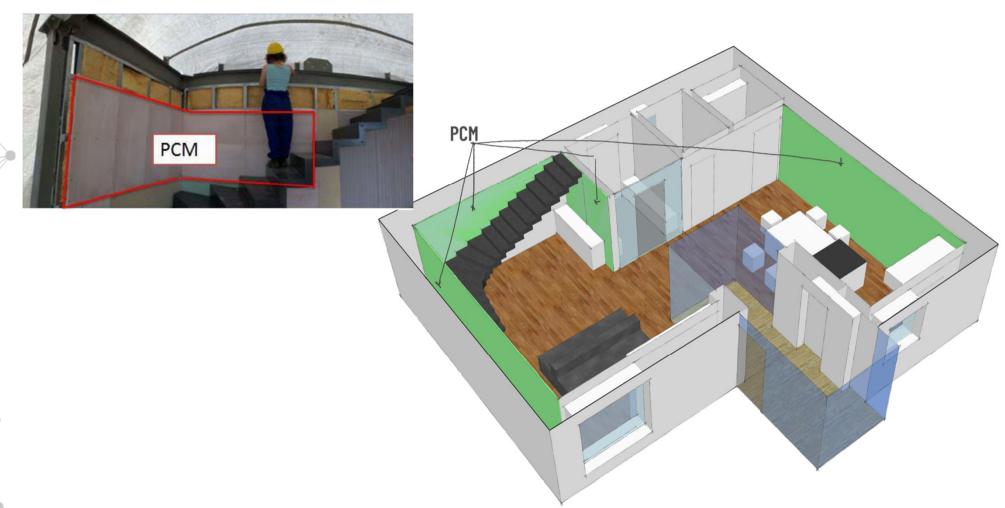
Thermal and acoustic insulation; cheap and moderately effective

Insufflated Insulators

PCMs layer

Simple solution;
it can be
integrated in
specific brick

Lightweight, long lasting; non-fireproof

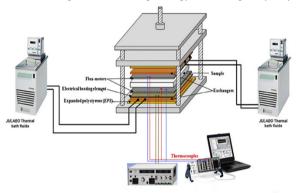

Insulators layer

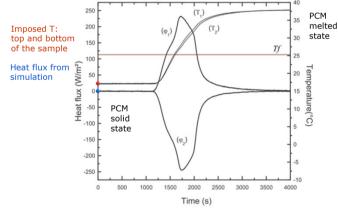
Building simulation

11

I-PCM · IoT-monitored PCM-based Facade for Low-energy Buildings

METABUILDING · H2020 G.A. 873964




PCM Model for 3D Simulation

I-PCM · IoT-monitored PCM-based Facade for Low-energy Buildings

Karkri et al., Thermal properties of smart microencapsulated paraffin/plaster composites for the thermal regulations of buildings. Energy and Buildings 88 (2015): 183-192.

Tf melting temperature

- T1 temperature on surface 1 (top)
- T2 temperature on surface 2 (bottom)
- φ1 heat flux on surface 1 (top)
- φ2 heat flux on surface 2 (bottom)

PCM computational model

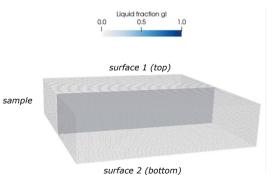
Momentum equation

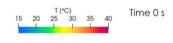
buoyancy source term

$$\rho_0 \frac{\partial \mathbf{v}}{\partial t} + \rho_0 \nabla \cdot (\mathbf{v}\mathbf{v}) = -\nabla p + \mu_0 \nabla^2 \mathbf{v} + \mathbf{S}_b + \mathbf{S}_d$$

Source term to force **v**=0 in the solid region

Energy equation


$$\rho c_p \frac{\partial T}{\partial t} + \rho c_p \nabla \cdot (\mathbf{v}T) = \nabla \cdot (k \nabla T) - S_h$$


where

Latent Liquid fraction (0 all solid, 1 all liquid), heat / depending on the melting temperature Tf

$$S_h = \rho_0 L_f \left[\frac{\partial g_l}{\partial t} + \nabla \cdot (\mathbf{v}g_l) \right]$$

Source term to release latent heat during solidification

CFD Simulation of Indoor Environment

I-PCM · IoT-monitored PCM-based Facade for Low-energy Buildings

Bejan et al., The implementation of phase changing materials in energy-efficient buildings. Case study: EFdeN project. Energy Procedia 85 (2016): 52-59.

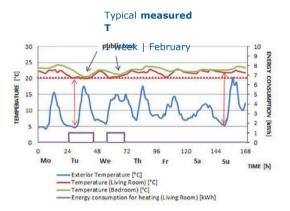
Bejan et al., Indoor environmental quality experimental studies in an energy-efficient building. Case study: EFdeN project. Energy Procedia 112 (2017): 269-276.

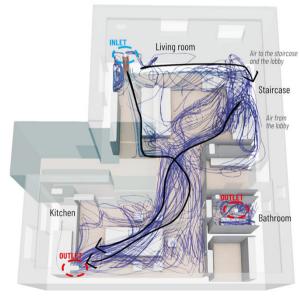
Building size 130 m2

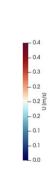
Passive strategies

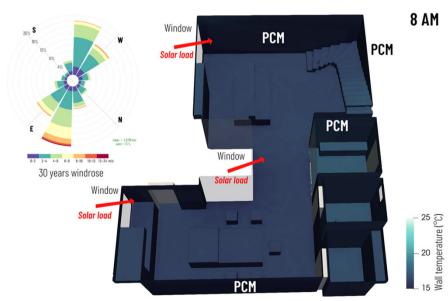
PCM

Ventilated facade


Natural ventilation


Greenhouse


House orientation

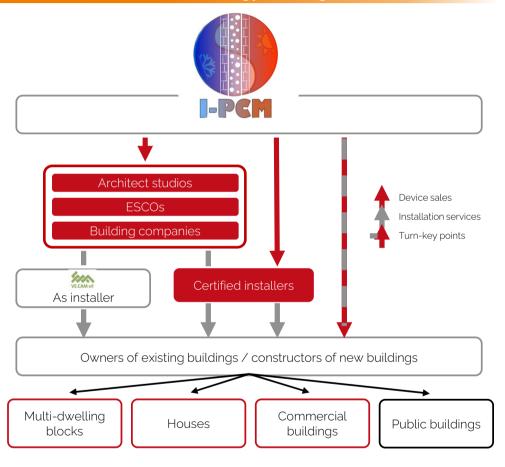

Materials

COMMERCIAL ANALYSIS

Market Analysis

I-PCM · IoT-monitored PCM-based Facade for Low-energy Buildings

EU construction output to increase by **2.1% in 2020**



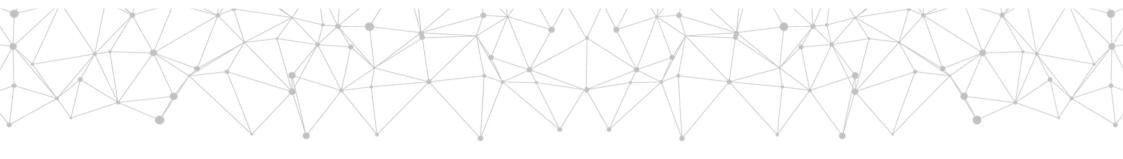
Business Model

Consortium

I-PCM · IoT-monitored PCM-based Facade for Low-energy Buildings

Advanced Microturbines (AMT), an italian company focused on IoT and energy harvesting microturbines.

Role: Development of ioT system and water microturbine.


BuildWind, a Belgian company specialized in building modeling and simulation.

Role: Simulation of the PCM-coated building.

Ve.Cam, an italian company, focused on building construction.

Role: Testing and market analysis.

Thank you for your kind attention

Project:

www.metabuilding-project.eu

Platform:

www.metabuilding.com

METABUILDING Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 873964. The European Commission and the European Innovation Council and SME Executive Agency (EISMEA) are not responsible for any use that may be made of the information it contains. The sole responsibility for the content of this document lies entirely with the author's view.

Access the platform and join now on

metabuilding.com